This unit covers the basic concepts and language we will use throughout the course. Just like every other topic we cover, we can view vectors and matrices algebraically and geometrically. It is important that you learn both viewpoints and the relationship between them.
» Session 15: Equations of Lines
» Session 16: Intersection of a Line and a Plane
» Session 17: General Parametric Equations; the Cycloid
» Session 18: Point (Cusp) on Cycloid
» Session 19: Velocity and Acceleration
» Session 20: Velocity and Arc Length
» Session 21: Kepler's Second Law
» Problem Set 3
In this unit we will learn about derivatives of functions of several variables. Conceptually these derivatives are similar to those for functions of a single variable.
- They measure rates of change.
- They are used in approximation formulas.
- They help identify local maxima and minima.
As you learn about partial derivatives you should keep the first point, that all derivatives measure rates of change, firmly in mind. Said differently, derivatives are limits of ratios. For example,
Of course, we’ll explain what the pieces of each of these ratios represent.
Although conceptually similar to derivatives of a single variable, the uses, rules and equations for multivariable derivatives can be more complicated. To help us understand and organize everything our two main tools will be the tangent approximation formula and the gradient vector.
Our main application in this unit will be solving optimization problems, that is, solving problems about finding maxima and minima. We will do this in both unconstrained and constrained settings.
» Session 24: Functions of Two Variables: Graphs
» Session 25: Level Curves and Contour Plots
» Session 26: Partial Derivatives
» Session 27: Approximation Formula
» Session 28: Optimization Problems
» Session 29: Least Squares
» Session 30: Second Derivative Test
» Session 31: Example
» Problem Set 4
This unit starts our study of integration of functions of several variables. To keep the visualization difficulties to a minimum we will only look at functions of two variables. (We will look at functions of three variables in the next unit.)
Our main objects of study will be two types of integrals:
- Double integrals, which are integrals over planar regions.
- Line or path integrals, which are integrals over curves.
All integrals can be thought of as a sum, technically a limit of Riemann sums, and these will be no exception. If you make sure you master this simple idea then you will find the applications and proofs involving these integrals to be straightforward.
We will conclude the unit by learning Green's theorem which relates the two types of integrals and is a generalization of the Fundamental Theorem of Calculus. Along the way we will introduce the concepts of work and two dimensional flux and also two types of derivatives of vector valued functions of two variables, the curl and the divergence.
» Session 47: Definition of Double Integration
» Session 48: Examples of Double Integration
» Session 49: Exchanging the Order of Integration
» Session 50: Double Integrals in Polar Coordinates
» Session 51: Applications: Mass and Average Value
» Session 52: Applications: Moment of Inertia
» Session 53: Change of Variables
» Session 54: Example: Polar Coordinates
» Session 55: Example
» Problem Set 7
» Session 56: Vector Fields
» Session 57: Work and Line Integrals
» Session 58: Geometric Approach
» Session 59: Example: Line Integrals for Work
» Session 60: Fundamental Theorem for Line Integrals
» Session 61: Conservative Fields, Path Independence, Exact Differentials
» Session 62: Gradient Fields
» Session 63: Potential Functions
» Session 64: Curl
» Problem Set 8
» Session 65: Green's Theorem
» Session 66: Curl(F) = 0 Implies Conservative
» Session 67: Proof of Green's Theorem
» Session 68: Planimeter: Green's Theorem and Area
» Session 69: Flux in 2D
» Session 70: Normal Form of Green's Theorem
» Session 71: Extended Green's Theorem: Boundaries with Multiple Pieces
» Session 72: Simply Connected Regions and Conservative
» Problem Set 9
» Exam
In our last unit we move up from two to three dimensions. Now we will have three main objects of study:
- Triple integrals over solid regions of space.
- Surface integrals over a 2D surface in space.
- Line integrals over a curve in space.
As before, the integrals can be thought of as sums and we will use this idea in applications and proofs.
We'll see that there are analogs for both forms of Green's theorem. The work form will become Stokes' theorem and the flux form will become the divergence theorem (also known as Gauss' theorem). To state these theorems we will need to learn the 3D versions of div and curl.
» Session 79: Vector Fields in Space
» Session 80: Flux Through a Surface
» Session 81: Calculating Flux; Finding ndS
» Session 82: ndS for a Surface z = f(x, y)
» Session 83: Other Ways to Find ndS
» Session 84: Divergence Theorem
» Session 85: Physical Meaning of Flux; Del Notation
» Session 86: Proof of the Divergence Theorem
» Session 87: Diffusion Equation
» Problem Set 11
» Session 88: Line Integrals in Space
» Session 89: Gradient Fields and Potential Functions
» Session 90: Curl in 3D
» Session 91: Stokes' Theorem
» Session 92: Proof of Stokes' Theorem
» Session 93: Example
» Session 94: Simply Connected Regions; Topology
» Session 95: Stokes' Theorem and Surface Independence
» Session 96: Summary of Multiple Integration
» Problem Set 12
» Session 98: Maxwell's Equations
Sem comentários:
Enviar um comentário